1. Introduction to Polymorphism

Polymorphism is one of the core concepts of Object-Oriented Programming (OOP). The word
polymorphism is derived from two Greek words: poly (many) and morph (forms). Hence, polymorphism
means one name, many forms.

In C++, polymorphism allows the same function or operator to perform different actions based on the
context in which it is used.

2. Meaning of Polymorphism

Polymorphism allows objects of different classes to be treated as objects of a common base class. It
enables a single function name to represent different implementations.

For example, a function named draw() can draw a circle, rectangle, or triangle depending on the object
calling it.

3. Need for Polymorphism

Polymorphism is required to:
e Increase code flexibility
e Reduce complexity
e Improve code readability
e Support dynamic behavior
e Make programs scalable

Without polymorphism, programs would require multiple function names for similar operations.

4. Polymorphism in Real Life

Real-world examples of polymorphism include:

e A person playing different roles (teacher, parent, employee)
e A smartphone performing multiple tasks (calling, browsing, gaming)
e A button performing different actions in different applications

5. Types of Polymorphism in C++

C++ supports two types of polymorphism:

1. Compile-Time Polymorphism
2. Run-Time Polymorphism

6. Compile-Time Polymorphism
Compile-time polymorphism is also known as static polymorphism. It is resolved during compilation.
[t is achieved using:

e Function overloading
e Operator overloading

7. Function Overloading

Function overloading allows multiple functions to have the same name but different parameter lists.

Example
int add(int a, int b);
float add(float a, float b);

The compiler decides which function to call based on arguments.

8. Rules of Function Overloading

e Functions must differ in number or type of parameters
e Return type alone is not sufficient
e Overloading improves readability

9. Operator Overloading

Operator overloading allows operators to be redefined to work with user-defined data types.

Example

Complex operator +(Complex c);

10. Advantages of Compile-Time Polymorphism

e Faster execution
o Early error detection

o Better performance
e Simple implementation

11. Run-Time Polymorphism

Run-time polymorphism is also known as dynamic polymorphism. It is resolved during program
execution.

It is achieved using:

e Function overriding
e Virtual functions

12. Function Overriding

Function overriding occurs when a derived class provides its own implementation of a base class
function.

Example
class Base {
public:
void show() {}

b

class Derived : public Base {
public:
void show() {}

13. Virtual Functions

A virtual function is a member function declared using the virtual keyword. It ensures that the correct
function is called at run time based on object type.

Example

class Base {
public:

virtual void display() {}

14. Role of Virtual Functions

e Enables dynamic binding
e Supports runtime decision-making

e Ensures correct function execution
e Improves flexibility

15. Base Class Pointer and Derived Class Object

Polymorphism is achieved using base class pointers pointing to derived class objects.

Example
Base* b;

Derived d;
b = &d;

16. Virtual Destructor

A virtual destructor ensures that the correct destructor is called when an object is deleted using a base
class pointer.

This prevents memory leaks.

17. Polymorphism and Inheritance

Polymorphism works closely with inheritance. Without inheritance, runtime polymorphism cannot be
achieved.

Inheritance provides the relationship, while polymorphism provides dynamic behavior.

18. Advantages of Polymorphism

Improves code reusability
Enhances flexibility
Simplifies maintenance
Supports extensibility
Enables dynamic behavior

19. Limitations of Polymorphism

o Slight performance overhead
e Complex debugging
e Increased memory usage

e Requires careful design

20. Common Mistakes in Polymorphism

Forgetting to use virtual keyword
Incorrect function signatures

Using base objects instead of pointers
Not using virtual destructors

21. Polymorphism vs Function Overloading

Function Overloading Polymorphism

Compile-time Run-time
Static binding Dynamic binding
Same function name Same function interface

22. Applications of Polymorphism

Polymorphism is used in:

Game development
GUI frameworks
Operating systems
Simulation software
Software libraries

23. Best Practices for Polymorphism

Use virtual functions wisely
Prefer base class pointers
Keep interfaces consistent
Avoid deep inheritance

24. Polymorphism and Dynamic Binding

Dynamic binding means function calls are resolved at run time. It is essential for runtime polymorphism.

25. Conclusion

Polymorphism is a powerful feature of C++ that allows one interface to represent many forms. It
enhances flexibility, reusability, and maintainability of code. By understanding compile-time and run-
time polymorphism, programmers can design efficient and scalable object-oriented applications.

